MINRES-QLP: a Krylov subspace method for indefinite or singular symmetric systems

نویسندگان

  • Sou-Cheng T. Choi
  • Christopher C. Paige
  • Michael A. Saunders
چکیده

CG, SYMMLQ, and MINRES are Krylóv subspace methods for solving symmetric systems of linear equations. When these methods are applied to an incompatible system (that is, a singular symmetric least-squares problem), CG could break down and SYMMLQ’s solution could explode, while MINRES would give a least-squares solution but not necessarily the minimum-length (pseudoinverse) solution. This understanding motivates us to design a MINRES-like algorithm to compute minimum-length solutions to singular symmetric systems. MINRES uses QR factors of the tridiagonal matrix from the Lanczos process (where R is upper-tridiagonal). MINRES-QLP uses a QLP decomposition (where rotations on the right reduce R to lower-tridiagonal form). On ill-conditioned systems (singular or not), MINRES-QLP can give more accurate solutions than MINRES. We derive preconditioned MINRES-QLP, new stopping rules, and better estimates of the solution and residual norms, the matrix norm, and the condition number. Choi, Paige & Saunders Valencia, June 18–22, 2012 2/13 Symmetric Lanczos Lanczos properties MINRES-QLP Abstract CG, SYMMLQ, and MINRES are Krylóv subspace methods for solving symmetric systems of linear equations. When these methods are applied to an incompatible system (that is, a singular symmetric least-squares problem), CG could break down and SYMMLQ’s solution could explode, while MINRES would give a least-squares solution but not necessarily the minimum-length (pseudoinverse) solution. This understanding motivates us to design a MINRES-like algorithm to compute minimum-length solutions to singular symmetric systems. MINRES uses QR factors of the tridiagonal matrix from the Lanczos process (where R is upper-tridiagonal). MINRES-QLP uses a QLP decomposition (where rotations on the right reduce R to lower-tridiagonal form). On ill-conditioned systems (singular or not), MINRES-QLP can give more accurate solutions than MINRES. We derive preconditioned MINRES-QLP, new stopping rules, and better estimates of the solution and residual norms, the matrix norm, and the condition number. Krylov Krylóv Chebyshev Qebyx v Choi, Paige & Saunders Valencia, June 18–22, 2012 2/13CG, SYMMLQ, and MINRES are Krylóv subspace methods for solving symmetric systems of linear equations. When these methods are applied to an incompatible system (that is, a singular symmetric least-squares problem), CG could break down and SYMMLQ’s solution could explode, while MINRES would give a least-squares solution but not necessarily the minimum-length (pseudoinverse) solution. This understanding motivates us to design a MINRES-like algorithm to compute minimum-length solutions to singular symmetric systems. MINRES uses QR factors of the tridiagonal matrix from the Lanczos process (where R is upper-tridiagonal). MINRES-QLP uses a QLP decomposition (where rotations on the right reduce R to lower-tridiagonal form). On ill-conditioned systems (singular or not), MINRES-QLP can give more accurate solutions than MINRES. We derive preconditioned MINRES-QLP, new stopping rules, and better estimates of the solution and residual norms, the matrix norm, and the condition number. Krylov Krylóv Chebyshev Qebyx v Choi, Paige & Saunders Valencia, June 18–22, 2012 2/13 Symmetric Lanczos Lanczos properties MINRES-QLP Abstract CG, SYMMLQ, and MINRES are Krylóv subspace methods for solving symmetric systems of linear equations. When these methods are applied to an incompatible system (that is, a singular symmetric least-squares problem), CG could break down and SYMMLQ’s solution could explode, while MINRES would give a least-squares solution but not necessarily the minimum-length (pseudoinverse) solution. This understanding motivates us to design a MINRES-like algorithm to compute minimum-length solutions to singular symmetric systems. MINRES uses QR factors of the tridiagonal matrix from the Lanczos process (where R is upper-tridiagonal). MINRES-QLP uses a QLP decomposition (where rotations on the right reduce R to lower-tridiagonal form). On ill-conditioned systems (singular or not), MINRES-QLP can give more accurate solutions than MINRES. We derive preconditioned MINRES-QLP, new stopping rules, and better estimates of the solution and residual norms, the matrix norm, and the condition number. Krylov Krylóv Chebyshev Qebyx v Krylov Krylóv Chebyshev Qebyx vCG, SYMMLQ, and MINRES are Krylóv subspace methods for solving symmetric systems of linear equations. When these methods are applied to an incompatible system (that is, a singular symmetric least-squares problem), CG could break down and SYMMLQ’s solution could explode, while MINRES would give a least-squares solution but not necessarily the minimum-length (pseudoinverse) solution. This understanding motivates us to design a MINRES-like algorithm to compute minimum-length solutions to singular symmetric systems. MINRES uses QR factors of the tridiagonal matrix from the Lanczos process (where R is upper-tridiagonal). MINRES-QLP uses a QLP decomposition (where rotations on the right reduce R to lower-tridiagonal form). On ill-conditioned systems (singular or not), MINRES-QLP can give more accurate solutions than MINRES. We derive preconditioned MINRES-QLP, new stopping rules, and better estimates of the solution and residual norms, the matrix norm, and the condition number. Krylov Krylóv Chebyshev Qebyx v Krylov Krylóv Chebyshev Qebyx v Choi, Paige & Saunders Valencia, June 18–22, 2012 2/13 Symmetric Lanczos Lanczos properties MINRES-QLP

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimal Residual Methods for Complex Symmetric, Skew Symmetric, and Skew Hermitian Systems

While there is no lack of efficient Krylov subspace solvers for Hermitian systems, few exist for complex symmetric, skew symmetric, or skew Hermitian systems, which are increasingly important in modern applications including quantum dynamics, electromagnetics, and power systems. For a large, consistent, complex symmetric system, one may apply a non-Hermitian Krylov subspace method disregarding ...

متن کامل

ALGORITHM & DOCUMENTATION: MINRES-QLP for Symmetric and Hermitian Linear Equations and Least-Squares Problems pdfsubject=MINRES-QLP for indefinite or singular symmetric systems

We describe algorithm MINRES-QLP and its FORTRAN 90 implementation for solving symmetric or Hermitian linear systems or least-squares problems. If the system is singular, MINRES-QLP computes the unique minimum-length solution (also known as the pseudoinverse solution), which generally eludes MINRES. In all cases, it overcomes a potential instability in the original MINRES algorithm. A positive-...

متن کامل

ALGORITHM & DOCUMENTATION: MINRES-QLP for Singular Symmetric and Hermitian Linear Equations and Least-Squares Problems pdfsubject=MINRES-QLP for indefinite or singular symmetric systems

We describe algorithm MINRES-QLP and its FORTRAN 90 implementation for solving symmetric or Hermitian linear systems or least-squares problems. If the system is singular, MINRES-QLP computes the unique minimum-length solution (also known as the pseudoinverse solution), which generally eludes MINRES. In all cases, it overcomes a potential instability in the original MINRES algorithm. A positive-...

متن کامل

New Krylov-subspace Solvers for Hermitian Positive Definite Matrices with Indefinite Preconditioners

Incomplete LDL∗ factorizations sometimes produce an inde nite preconditioner even when the input matrix is Hermitian positive de nite. The two most popular iterative solvers for Hermitian systems, MINRES and CG, cannot use such preconditioners; they require a positive de nite preconditioner. We present two new Krylov-subspace solvers, a variant of MINRES and a variant of CG, both of which can b...

متن کامل

Solving Hermitian positive definite systems using indefinite incomplete factorizations

Incomplete LDL factorizations sometimes produce an indefinite preconditioner evenwhen the input matrix is Hermitian positive definite. The two most popular iterative solvers for symmetric systems, CG and MINRES, cannot use such preconditioners; they require a positive definite preconditioner. One approach, that has been extensively studied to address this problem is to force positive definitene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2011